With UJN 2019 [1] Zhu, X.; Sun, J.; Yuan, S.; Li, N.; Qiu, Z.; Jia, J.; Liu, Y.;Dong, J.; Lv, P.; Cao, B. Efficient and stable planar perovskite solar cellswith carbon quantum dots-doped PCBM electron transport layer. New J. Chem. 2019, 43, 7130-7135. [2] Yang, S.; Li, Y.; Sun, J.; Cao, B. Laser inducedoxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J. Power Sources 2019, 431, 220-225. [3] Sun, J.; Yang, S.; Yang, C.; Jia, Q.; Yang, X.; Cao, B.Corncob-derived hierarchical porous carbons constructed by re-activation forhigh-rate lithium-ion capacitors. New J.Chem. 2019, 43, 10103-10108. [4] Sun, J.; Yang, S.; Ai, J.; Yang, C.; Jia, Q.; Cao, B. Hierarchical Porous Activated Carbon Obtained by a Novel Heating-Rate-InducedMethod for Lithium-Ion Capacitor. Chemistryselect2019, 4, 5300-5307. [5] Lv, P.; Sun, H.; Yang, H.; Fu, W.; Cao, B.; Liu, Y.; Wang, C.; Mu, Y. The influence of scattering layer thin film on photoelectric propertiesof Bi2S3/CdS/TiO2 electrode. Vacuum 2019,161, 21-28. [6] Liu, J.; Li, N.; Jia, J.; Dong, J.; Qiu, Z.; Iqbal, S.; Cao, B. Perovskite films grown with green mixed anti-solvent for highly efficient solarcells with enhanced stability. SolarEnergy 2019, 181, 285-292. [7] Li, N.; Xu, F.; Qiu, Z.; Liu, J.; Wan, X.; Zhu, X.; Yu, H.; Li,C.; Liu, Y.; Cao, B. Sealing the domain boundaries and defects passivation byPoly(acrylic acid) for scalable blading of efficient perovskite solar cells. J. Power Sources 2019, 426, 188-196. [8] Li, L.; Dai, J.; Jiang, G.; Sun, X.; Huang, Z.; Xie, Z.; Cao,B. Three-Dimensional Mesoporous Straw-like Co3O4 Anode with EnhancedElectrochemical Performance for Lithium-Ion Batteries. Chemistryselect 2019, 4, 6879-6885. [9] Ju, D.; Zheng, X.; Yin, J.; Qiu, Z.; Turedi, B.; Liu, X.; Dang,Y.; Cao, B.; Mohammed, O. F.; Bakr, O. M.; Tao, X. Tellurium-Based DoublePerovskites A(2)TeX(6) with Tunable Band Gap and Long Carrier Diffusion Lengthfor Optoelectronic Applications. ACSEnergy Lett. 2019, 4, 228-234. [10] Jiang, G.; Li, L.; Huang, Z.; Xie, Z.; Cao, B. Rod-like porousCoMoO4@C as excellent anode for high performance lithium ion battery. J. Alloys Compd. 2019, 790, 891-899. [11] Feng, Z.; Zhang, X.; Wang, Y.; Zhang, J.; Jia, T.; Cao, B.; Zhang,Y. Thermoelectric optimization of AgBiSe2 by defect engineering forroom-temperature applications. Phys. Rev.B 2019, 99. [12] Dong, J.; Jia, J.; Cao, B.; Wu, J. Spin-coated cobalt telluridecounter electrodes for highly efficient dye-sensitized solar cells. Mater. Res. Bull. 2019, 115, 65-69. 2018 [1] Liu F, Yang X, Qiao Z, et al. Highly transparent 3D NiO-Ni/Ag-nanowires/FTO micro-supercapacitor electrodes for fully transparent electronic device purpose[J]. Electrochimica Acta, 2018, 260: 281-289. [2] Zhai T, Xu H, Li W, et al. Low-temperaturein-situ growth of SnO2 nanosheets and its high triethylamine sensing responseby constructing Au-loaded ZnO/SnO2 heterostructure[J]. Journal of Alloys and Compounds, 2018, 737: 603-612. [3] Yu H, Xu H, Li W, et al. Enhanced triethylamine sensing properties by designing Au@SnO2/ZnO nanosheets directly on alumina tubes[J]. Surfaces and Interfaces, 2018, 10: 85-92. [4] Yang S, Liu Y, Hao Y, et al. Oxygen-Vacancy Abundant Ultrafne Co3O4/Graphene Composites for High-Rate Supercapacitor Electrodes[J]. Advanced Science, 2018, 1700659. [5] Luo T, Chen X, Wang L, et al. Green laser irradiation-stimulated fullerene-like MoS2 nanospheres for tribological applications[J]. Tribology International, 2018,122:119-124. [6] Yang S, Han Z, Sun J, et al. Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode[J]. Electrochimica Acta, 2018,268:20-26. [7] Luo T, Chen X, Li P, et al. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties[J]. Nanotechnology, 2018,29:265704. [8]Song X, XU Q, Zhang T, et al.Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous -Fe2O3 nanorods directly grown on flat substrate[J]. Sensors and Actuators B,2018,268:170-181. [9] Xu H, Li W, Rui H,et al.Enhanced triethylamine sensing properties by fabricating Au@SnO2/-Fe2O3 core-shell nanoneedles directly on alumina tubes[J]. Sensors and Actuators B,2018,262:70-78. [10] Luo T, Chen X, Wang L, Wang P, Li C, Iqbal S, Cao B, et al. Ultrafast synthesis of SiC@graphene nanocomposites by one-step laser induced fragmentation and decomposition.[J] Ceramics International,2018,44:19028-19032. [11] Wan X, Jiang Y, Qiu Z, Zhang H, Zhu X, Iqbal S, Liu X, Chen X, Cao B, et al.Zinc as new dopant for NiOx based planar perovskite solar cells with stable efficiency near 20%.[J] ACS Applied Energy Materials,1 (8): 3947–3954. [12] Gao C, Yuan S, Cui K, Qiu Z, Ge S, Cao B, Yu J, et al. Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Hole-Transport-Materials-Free Perovskite Solar Cell. 2017 [1] Qiu Z, Yuan S, Gong H, et al. The Influence of Physical Properties of ZnO Films on the Efficiency of Planar ZnO/Perovskite/P3HT Solar Cell[J]. Journal of the American Ceramic Society, 2017, 100(1): 176-184. [2] Qiu X, Cao B, Yuan S, et al. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient[J]. Solar Energy Materials and Solar Cells, 2017, 159: 227-234. [3] Gao C, Wang Y,Yuan S, Bingqiang Cao* et al. Engineering anatase hierarchically cactus-like TiO2 arrays forphotoelectrochemical and visualized sensing platform[J]. Biosensors andBioelectronics, 2017, 90: 336-342. [4] Jiang Y, Zhang H, Qiu X, Bingqiang Cao* et al. The air and thermal stabilities of lead-free perovskite variant Cs2SnI6 powder[J]. Materials Letters, 2017, 199: 50-52. [5] Li W, Xu H, Zhai T, et al. High-sensitivity, high-selectivity, and fast-recovery-speed triethylamine sensor based on ZnO micropyramids prepared by molten salt growth method[J]. Journal of Alloys and Compounds, 2017, 695: 2930-2936. [6] Li W, Xu H, Yu H, et al. Different morphologies of ZnO and their triethylamine sensing properties[J]. Journal of Alloys and Compounds, 2017, 706: 461-469. [7] Xu Q, Zhang Z, Song X, Bingqiang Cao* et al. Improving the triethylamine sensing performance based on debye length: A case study on α-Fe2O3@ NiO (CuO) core-shell nanorods sensor working at near room-temperature[J]. Sensors and Actuators B: Chemical, 2017, 245: 375-385. [8] Sun J, Yang S H, Li S S, et al. Double-activated porous carbons for high-performance supercapacitor electrodes[J]. Rare Metals, 2017, 36: 449–456. [9] Song X, Xu Q, Xu H, Bingqiang Cao* et al. Highly sensitive gold-decorated zinc oxide nanorods sensor for triethylamine working at near room temperature[J]. Journal of Colloid and Interface Science, 2017, 499: 67-75. [10] Gao C, Yuan S, Cao B, Bingqiang Cao* et al. SnO2 nanotube arrays grown via an in–situ template–etching strategy for effective and stable perovskite solar cells[J]. Chemical Engineering Journal, 2017,325: 378–385. [11] Qiu Z, Gong H, Zheng G, Bingqiang Cao* et al. Enhancedphysical properties of pulsed laser deposited NiO films via annealing andlithium doping for improving perovskite solar cell efficiency[J]. Journal of Materials Chemistry C, 2017, 5(28): 7084-7094. [12] Luo T, Chen X, Wang P, Bingqiang Cao* et al. Laser Irradiation‐Induced SiC@Graphene Sub‐Microspheres: A Bioinspired Core–Shell Structure for Enhanced Tribology Properties[J]. Advanced Materials Interfaces, 2017. DOI: 10.1002/admi.201700839 [13] Li L, Zhang Z, Ren S, et al. Construction of hollow Co3O4 cubes as a high-performance anode for lithium ion batteries[J]. New Journal of Chemistry, 2017, 41(16): 7960-7965. [14] Yang X, Xu X, Liu F, et al. Fabrication of p-ZnO: Na/n-ZnO: Na homojunction by surface pulsed laser irradiation[J]. RSC Advances, 2017, 7(59): 37296-37301. [15] Yang X, Liu F, Duan G, et al. Super-long ZnO nanofibers and novel nucleation mechanism for a gas-phase environment: spatial linear nucleation[J]. CrystEngComm, 2017, 19(34): 4983-4991. 2016 [1] Yuan S, Qiu Z, Zhang H, et al. Oxygen influencing the photocarriers lifetime of CH3NH3PbI3− xClx film grown by two-step interdiffusion method and its photovoltaic performance[J]. Applied Physics Letters, 2016, 108(3): 033904. [2] Xu Q, Ju D, Zhang Z, et al. Near room-temperature triethylamine sensor constructed with CuO/ZnO PN heterostructural nanorods directly on flat electrode[J]. Sensors and Actuators B: Chemical, 2016, 225: 16-23. [3] Guo J, Zhang J, Gong H, et al. Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor[J]. Sensors and Actuators B: Chemical, 2016, 226: 266-272. [4] Xu H, Ju D, Li W, et al. Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film[J]. Sensors and Actuators B: Chemical, 2016, 224: 654-660. [5] Xu H, Ju J, Li W, et al. Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes[J]. Sensors and Actuators B: Chemical, 2016, 228: 634-642. [6] Zhu Z, Zou Y, Hu W, et al. Near‐Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology[J]. Advanced Functional Materials, 2016, 26(11): 1793-1802. [7] Yuan S, Qiu Z, Zhang H, et al. Growth temperature-dependent performance of planar CH3NH3PbI3 solar cells fabricated by a two-step subliming vapor method below 120° C[J]. RSC Advances, 2016, 6(53): 47459-47467. [8] Qiao Z, Yang X, Yang S, et al. 3D hierarchical MnO2 nanorod/welded Ag-nanowire-network composites for high-performance supercapacitor electrodes[J]. Chemical communications, 2016, 52(51): 7998-8001. [9] Qiu X, Jiang Y, Zhang H, et al. Lead‐free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers[J]. physica status solidi (RRL)-Rapid Research Letters, 2016, 10(8): 587-591. [10] 刘畅, 苑帅, 张海良,等. 铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能[J]. 无机材料学报, 2016, 31(4):358-364. [11] Binjie Zheng,Yuanfu Chen,Pingjian Li,Zegao Wang,Bingqiang Cao,Fei Qi,Jinbo Liu,Zhiwen Qiu, Wanli Zhang. Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties [J]. Nanophotonics, 2016. [12] Ting Luo, Ping Wang, Zhiwen Qiu, Shuhua Yang, Haibo Zengb, Bingqiang Cao*. Smooth and solid WS2 submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties[J]. Chemical Communications, 2016, 52(66): 10147-10150. [13] Shuai Yuan, Zhiwen Qiu, Chaomin Gao, Hailiang Zhang, Yanan Jiang, Cuncheng Li, Jinghua Yu, Bingqiang Cao*. High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22238-22245. [14] Zichao Zhang, Li Li,* Quan Ren, Qi Xu,Bingqiang Cao*. Hierarchical Co3O4 Nanowires as Binder Free Electrodes for Reversible Lithium Storage[J]. Chinese Journal of Chemistry, 2016. 2015 [1] Ju D X, Xu H Y, Qiu Z W, et al. Near room temperature, fast-response, and highly sensitive triethylamine sensor assembled with Au-loaded ZnO/SnO2 core–shell nanorods on flat alumina substrates[J]. ACS applied materials & interfaces, 2015, 7(34): 19163-19171. [2] Li L, Ma J, Zhang Z, et al. Hierarchical Co@C Nanoflowers: Synthesis and Electrochemical Properties as an Advanced Negative Material for Alkaline Secondary Batteries[J]. ACS applied materials & interfaces, 2015, 7(43): 23978-23983. [3] Ju D, Xu H, Xu Q, et al. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors[J]. Sensors and Actuators B: Chemical, 2015, 215: 39-44. [4] Zi M, Li J, Zhang Z, et al. Effect of deposition temperature on transparent conductive properties of γ‐CuI film prepared by vacuum thermal evaporation[J]. physica status solidi (a), 2015, 212(7): 1466-1470. [5] Han J, Gong H, Yang X, et al. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly (ethylene terephthalate) substrate[J]. Applied Surface Science, 2015, 332: 549-556. [6] Duan G, Hu X, Song X, et al. Morphology evolution of ZnO submicroparticles induced by laser irradiation and their enhanced tribology properties by compositing with Al2O3 nanoparticles[J]. Advanced Engineering Materials, 2015, 17(3): 341-348. [7] Qiu Z, Gong H, Yang X, et al. Phosphorus concentration dependent microstructure and optical property of ZnO nanowires grown by high-pressure pulsed laser deposition[J]. The Journal of Physical Chemistry C, 2015, 119(8): 4371-4378. [8] Zhao Q, Ju D, Deng X, et al. Morphology-modulation of SnO2 hierarchical architectures by Zn doping for glycol gas sensing and photocatalytic applications[J]. Scientific reports, 2015, 5. [9] Zhang Z, Li L, Xu Q, et al. 3D hierarchical Co3O4 microspheres with enhanced lithium-ion battery performance[J]. RSC Advances, 2015, 5(76): 61631-61638. [10] Han J, Yuan S, Liu L, et al. Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze[J]. Journal of Materials Chemistry A, 2015, 3(10): 5375-5384. 2014 [1] Yao N, Huang J, Fu K, et al. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu 3+, Dy 3+[J]. Journal of Power Sources, 2014, 267: 405-410. [2] Ju D, Xu H, Zhang J, et al. Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing[J]. Sensors and Actuators B: Chemical, 2014, 201: 444-451. [3] Qiu X, Chen L, Gong H, et al. The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dots sensitized ZnO nanorods solar cells[J]. Journal of colloid and interface science, 2014, 430: 200-206. [4] Song X, Qiu Z, Yang X, et al. Submicron-lubricant based on crystallized Fe3O4 spheres for enhanced tribology performance[J]. Chemistry of Materials, 2014, 26(17): 5113-5119. [5] Ju D, Xu H, Qiu Z, et al. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction[J]. Sensors and Actuators B: Chemical, 2014, 200: 288-296. [6] Guo J, Zhang J, Zhu M, et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles[J]. Sensors and Actuators B: Chemical, 2014, 199: 339-345. [7] Qiu Z, Yang X, Han J, et al. Sodium‐Doped ZnO Nanowires Grown by High‐pressure PLD and their Acceptor‐Related Optical Properties[J]. Journal of the American Ceramic Society, 2014, 97(7): 2177-2184. [8] Zi M, Zhu M, Chen L, et al. ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties[J]. Ceramics International, 2014, 40(6): 7965-7970. [9] QIU Z W, YANG X P, HAN J, et al. p-type Sodium-doped Zinc Oxide Nanowire Arrays Grown by High-pressure Pulsed Laser Deposition[J]. WUJI CAILIAO XUEBAO, 2014, 29(2): 155-161. [10] Zhu M, Chen L, Gong H, et al. A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells[J]. Ceramics International, 2014, 40(1): 2337-2342. [11] Zhang Y, Ge L, Li M, et al. Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay[J]. Chemical Communications, 2014, 50(12): 1417-1419. [12] Zhang J., Ni J., Guo J., CaoBinqiang. TiO2@C composite nanospheres with an optimized homogeneous structurefor lithium-ion batteries [J]. New Journal of Chemistry, 2014,38(38):3722-3728. 2013 [1] Xu H, Chen X, Zhang J, et al. NO 2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid[J]. Sensors and Actuators B: Chemical, 2013, 176: 166-173. [2] Guo J, Zhang J, Ju D, et al. Three-dimensional SnO2 microstructures assembled by porous nanosheets and their superior performance for gas sensing[J]. Powder technology, 2013, 250: 40-45. [3] Yang X, Qiu Z, Li X, et al. Performance Improvement of Ultraviolet Sensor of ZnO Nanorod Arrays[J]. Applied Physics Express, 2013, 6(12): 125201. [4] Han J, Zhang P, Gong H B, et al. Influence of the growth conditions on the transparent conductive properties of ZnO: Al thin films grown by pulsed laser deposition[J]. 2013. [5] Chen L, Gong H, Zheng X, et al. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process[J]. Materials Research Bulletin, 2013, 48(10): 4261-4266. [6] Zhang J, Liu X, Wu S, et al. One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing[J]. Sensors and Actuators B: Chemical, 2013, 186: 695-700. [7] Zhang J, Guo J, Xu H, et al. Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance[J]. ACS applied materials & interfaces, 2013, 5(16): 7893-7898. [8] Zhang P, Chen L, Zi M, et al. Zn1− xMgxO (0≤ x≤ 0.05) nanowalls grown on catalyst-free sapphire substrates by high-pressure PLD and their photoluminescence properties[J]. Applied Physics A, 2013, 111(4): 1119-1124. [9] Man L, Zhang J, Wang J, et al. Microwave-assisted hydrothermal synthesis and gas sensitivity of nanostructured SnO2[J]. Particuology, 2013, 11(2): 242-248. [10] Zhang J, Liu X, Zhang L, et al. Reactive template synthesis of polypyrrole nanotubes for fabricating metal/conducting polymer nanocomposites[J]. Macromolecular rapid communications, 2013, 34(6): 528-532. [11] Yang S, Lapsley M I, Cao B, et al. Large-Scale Fabrication of Three-Dimensional Surface Patterns Using Template-Defined Electrochemical Deposition[J]. Advanced Functional Materials, 2013, 23(6): 720-730. 2012 [1] Song X, Zheng S, Zhang J, et al. Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives[J]. Materials Research Bulletin, 2012, 47(12): 4305-4310. [2] Hu X, Gong H, Wang Y, et al. Laser-induced reshaping of particles aiming at energy-saving applications[J]. Journal of Materials Chemistry, 2012, 22(31): 15947-15952. [3] Chen Q, Zheng S, Yang S, et al. Enhanced tribology properties of ZnO/Al2O3 composite nanoparticles as liquid lubricating additives[J]. Journal of sol-gel science and technology, 2012, 61(3): 501-508. [4] Zhang P, Zhou G D, Gong H B, et al. Pressure-induced growth evolution of different ZnO nanostructures by a pulsed Laser Ablation method[J]. Science of Advanced Materials, 2012, 4(3-4): 455-462. [5] Li W, Zheng S, Chen Q, et al. A new method for surface modification of TiO2/Al2O3 nanocomposites with enhanced anti-friction properties[J]. Materials Chemistry and Physics, 2012, 134(1): 38-42. [6] Wei H M, Gong H B, Chen L, et al. Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure[J]. The Journal of Physical Chemistry C, 2012, 116(19): 10510-10515. [7] Chen L, Gong H, Wei H, et al. Aqueous Synthesis of CdTe and HgCdTe Quantum Dots and Their Application in Quantum Dot-Sensitized Solar Cells[J]. Science of Advanced Materials, 2012, 4(2): 337-341. [8] Zhang J, Liu X, Wang S, et al. Synthesis and catalytic activity of Au-supported porous TiO2 nanospheres for CO oxidation[J]. Powder technology, 2012, 217: 585-590. [9] Zhang J, Liu X, Wu S, et al. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance[J]. Sensors and Actuators B: Chemical, 2012, 169: 61-66.[10] Yang S, Kiraly B, Wang W Y, et al. Fabrication and characterization of beaded SiC quantum rings with anomalous red spectral shift[J]. Advanced Materials, 2012, 24(41): 5598-5603.[11] Zhang J., Liu X., Wu S., Cao Bingqiang. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance[J]. Sensors & Actuators B Chemical, 2012, 169(4):61-66.[12] 魏浩铭, 陈令, 巩海波, 曹丙强*, 氧化锌纳米棒形貌对ZnO/Cu2O异质结太阳能电池光伏性能的影响[J], 无机材料学报, 27 (8): 833-837, 2012.[13] 张鹏, 王培吉, 曹丙强*, 高压PLD法生长ZnO和Zn1-xMgxO纳米棒及其荧光性能[J], 无机材料学报, 27 (11): 1205-1210, 2012.2011 [1] Gong H, Hao X, Wu Y, et al. Enhanced light extraction from GaN-based LEDs with a bottom-up assembled photonic crystal[J]. Materials Science and Engineering: B, 2011, 176(13): 1028-1031. [2] Li W, Zheng S, Cao B, et al. Friction and wear properties of ZrO2/SiO2 composite nanoparticles[J]. Journal of Nanoparticle Research, 2011, 13(5): 2129-2137. [3] Cao B Q, Wei H M, Hu X L, et al. Polar and Nonpolar ZnO Nanowire QWs grown with PLD using Nanowire Arrays with Tuning Density as Physical Templates[C]//Materials Science Forum. Trans Tech Publications, 2011, 688: 207-212. [4] Cao B Q, Sakai K, Nakamura D, et al. Stimulated optical emission from ZnO nanobelts grown with a simple carbothermal evaporation method[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1702-1707. [5] Cao B Q, Liu Z M, Xu H Y, et al. Catalyst/dopant-free growth of ZnO nanobelts with different optical properties from nanowires grown via a catalyst-assisted method[J]. CrystEngComm, 2011, 13(12): 4282-4287. [6] Yang S., Cao Bingqiang, Kong L, et al. Template-directed dewetting of a gold membrane to abricate highly SERS-active substrates[J]. Journal of Materials Chemistry, 2011, 21(36):14031-14035. [7] Yang S., Li W., Cao Bingqiang, et al. Origin of Blue Emission from Silicon Nanoparticles: Direct Transition and Interface Recombination[J]. J.phys.chem.c, 2011, 115(43):21056-21062. [8] Jiao D, Zheng S, Wang Y, et al. The tribology properties of alumina/silica composite nanoparticles as lubricant additives[J]. Applied Surface Science, 2011, 257(13):5720–5725. [9] Hu X, Gong H, Xu H, et al. Influences of Target and Liquid Media on Morphologies and Optical Properties of fcZnO/fc Nanoparticles Prepared by Laser Ablation in Solution[J]. Journal of the American Ceramic Society, 2011, 94(12):4305–4309. 2010 [1] Cao B Q, Hu X L, Wei H M, et al. Radial and axial nanowire heterostructures grown with ZnO nanowires as templates[C]//TENCON 2010-2010 IEEE Region 10 Conference. IEEE, 2010: 986-989. [2] Zeng H, Cui J, Cao B, et al. Electrochemical deposition of ZnO nanowire arrays: organization, doping, and properties[J]. Science of Advanced Materials, 2010, 2(3): 336-358. [3] Cao B Q, Zúñiga–Pérez J, Czekalla C, et al. Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures[J]. Journal of Materials Chemistry, 2010, 20(19): 3848-3854. 2009 [1] Cao B Q, Matsumoto T, Matsumoto M, et al. ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors[J]. The Journal of Physical Chemistry C, 2009, 113(25): 10975-10980. [1] Cao B. Q.*, Li Y., Cai W. P.,Ch 9 Metal Oxide Nanostructured Arrays: Nonconventional Template-assistant andTemplate-free Growth, Properties, and Applications,(pp. 356-396) in Metal OxideNanostructures and Applications, (Eds, Y. B. Hahn, A. Umar), American ScientificPublishers, California, USA, ISBN:1-58883-170-1, 2010[2] Cao B. Q.*, Cai W. P., Ch 6ZnO Nanowire Arrays: Template-free Assembly Growth and Their PhysicalProperties, (pp. 237-274) in Nanofabrication, Patterning, and Self-assembly(Eds, Charles J. Dixon and Ollin W. Curtines), Nova Science Publishers, Inc,New York, USA, ISBN: 978-1-60692-162-3,2010[3] Cao B. Q., M. Lorenz, G.Zimmermann, C. Czekalla, M. Brandt, H. von Wenckstern, M. Grundmann, Ch 6p-type phosphorus doped ZnO wires for optoelectrical applications, in Nanowires(Ed. Paola Prete), Intech, Vukovar, Croatia, ISBN 978-953-7619-79-4, 2010[4] Cao B. Q.* T. Okada, Ch 3 ZnO Nanowire and itsHeterostructures Grown with Nanoparticle-assisted Pulsed Laser Deposition, in Applications of Laser in theProcessing of Nanomaterials and their Characterizations (Ed, Subhash ChandraSingh et al), Wiley-VCH, Weiheim, Germany, ISBN: 978-3-527-32715-7, 2012[5] Cao B. Q.* H. B. Zeng, W. P. Cai, Ch 13 Application ofPhotoluminescence Spectroscopy in Characterizations of Nanomaterials(pp.555-572), in Applications ofLaser in the Processing of Nanomaterials and their Characterizations (Ed,Subhash Chandra Singh et al), Wiley-VCH, Weiheim, Germany, ISBN: 978-3-527-32715-7, 2012Before Joining UJN(2001 - 2009)with ISSP-CAS,University of Leipzig, and Kyushu University [1] Lorenz M., Rahm A., Cao B. Q.,et al. Self-organized growth of ZnO-basednano- and microstructures, PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS,247, 1265-1281, 2010.[2] CzekallaC., Nobis T., Rahm A., Cao B. Q. et al., Whisperinggallery modes in zinc oxide micro- and nanowires ,PHYSICA STATUS SOLIDI B-BASICSOLID STATE PHYSICS, 247: 1282-1293, 2010.[3] ZimmermannG., Lange M., Cao B.Q., et al.,Resistivity control of ZnO nanowires by Al doping, PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 4: 82-84, 2010.[4] Cao B. Q., Matsumoto T.,Matsumoto M., et al. ZnONanowalls Grown with PLD and their Field Emission and UV Detector Properties,2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS ANDELECTRO-OPTICS, 1~2: 460-461, 2009.[5] MatsumotoT., Kumeda A., Cao B. Q.,et al, Synthesis of Horizontally-Aligned ZnO Nanowires and Their Applicationsto Sensors, 2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCEON LASERS AND ELECTRO-OPTICS, 1~2: 1325-1326, 2009.[6] Cao B. Q., J.Zúñiga-Pérez, N. Boukos, C. Czekalla, H. Hilmer, J. Lenzner, A. Travlos, M.Lorenz, M. Grundmann,Homogenous ZnO/ZnMgO radial quantum well heterostructures on low-density ZnOnanowires , Nanotechnology 20: 305701, 2009 (被选为封面)[7] M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M.Lorenz, Cao B. Q.,J. Zúñiga-Pérez, et al. Zinc Oxide Nanorods based photonic devices: Recentprogress in growth light emitting diodes and lasers, (Topical Review), Nanotechnology 20 332001, 2009.[8] M.Lorenz, Cao B. Q.,G. Zimmermann, G. Biehne, C. Czekalla, H. Frenzel, M. Brandt, H. vonWenckstern, M. Grundmann, Stablep-type ZnO:P nanowire/n-type ZnO:Ga film junctions, reproducibly grown bytwo-step pulsed laser deposition J. Vac. Sci. Technol. B 27: 1693-1697, 2009.[9] C.Czekalla, C. Sturm, R. Schmidt-Grund, Cao B. Q., J. Zúñiga Pérez, M. Lorenz, M. Grundmann,Optical characterization of zinc oxidemicrolasers and microwire core-shell heterostructures J. Vac. Sci.Technol. B 27: 1870, 2009.[10]Huang X. H., G. H. Li, Cao B. Q., Wang M., Hao C.Y., Morphology Evolution and CL Property of Ni-Doped Zinc Oxide Nanostructureswith Room-Temperature Ferromagnetism, J. Phys. Chem. C, 113: 4381-4385, 2009.[11]Cao B. Q, M. Lorenz, H. von Wenckstern,C. Czekalla, M. Brant, A. Rahm, J. Lenzner, G. Bendorf, G. Biehne, M.Grundmann, Phosphorus doped ZnO wires:acceptor-related cathodoluminescence and p-type conducting FET-characteristics,SPIE V6895: 25, 2008.[12]Cao B Q*, Cai W P, From ZnO Nanorods to Nanoplates:Chemical Bath Deposition Growth and Surface-related Emission, J. Phys. Chem. C,112: 680-685, 2008.[13]Cao B Q*., M. Lorenz, M. Brandt, H. vonWenckstern, J. Lenzner, G. Biehne, M. Grundmann, p-type Conducting ZnO Microwires Prepared by DirectCarbothermal Growth, phys. stat. sol. (RRL), 2: 37-39, 2008.[14]Czekalla C., Strum C., Schmit-Grund R.,Cao B. Q.,Lorenz M., Grundmann M., Whisper Gallery Mode Lasing in ZnO Microwires, Appl.Phys. Lett., 94: 241102, 2008.[15]Czekalla C, Guinard J, Hanisch C, Cao B. Q., Kaidashev E M,Boukos N, Travlos A, Renard J, Gayral B, Dang D Le Si, Lorenz M, Grundmann M,Spatial fluctuations of the optical emission from single ZnO/ZnMgO nanowirequantum wells, Nanotechnology, 19: 115202, 2008.[16]Cao B. Q.*, Teng X.M., Heo S. H., Li Y., Cho S. O., Li G. H., Cai W. P., Different ZnO Nanostructures Fabricated by a Seed-LayerAssisted Electrochemical Route and their Photoluminescence and Field EmissionProperties, J. Phys. Chem. C 111:2470-2476, [2007].[17]Cao B. Q.*, M. Lorenz, A. Rahm. H. von Wenckstern, C. Czekalla, J. Lenzner, G.Benndorf, M. Grundmann, Phosphorous Acceptor Doping of ZnO nanowires byPulsed Laser Deposition, Nanotechnology,18: 455707, [2007].[18]Zeng H. B., Li Z. G., Cai W. P., Cao B. Q., Liu P. S., Yang S.K., Microstructure Control of Zn/ZnO Core/shell Nanoparticles and TheirTemperature-dependent Blue Emissions, J. Phys. Chem. B 111: 14311-14317, [2007][19]Huang Z. Y., Chai C. F., Cao B. Q., Temperature-dependentEmission Shifts of Peanutlike ZnO Microrods Synthesized by a HydrothermalMethod, Crystal Growth and Design,7: 1686-1689, [2007].[20]Cao. B. Q., Cai W. P., Zeng H. B., Temperature-dependentDifferent Shifts of Three Emission Bands for ZnO Nanowire Arrays, Appl. Phys. Lett. 88: 161101, [2006].(Selected in Virtual Journal of Nanoscience and Nanotechnology)[21]Cao B. Q., Cai W. P.,Zeng H. B., Duan G. T.,Morphology evolution and Photoluminescence properties of ZnO FilmsElectrochemically Deposited on Conductive Glass Substrates, J. Appl. Phys. 99: 073516, [2006].[22]Cao B. Q.*, Cai W. P., Li Y., Duan G. T., Growth of ZnO Nanoneedle Arrays with StrongUltraviolet Emissions by an Electrochemical Deposition Method, Crystal Growth and Design, 6: 1091-1095,[2006].[23]Zeng. H. B.,Cai W. P., Cao B. Q., Hu J. L., Li Y., Liu P. S., Surface Optical Phonon Raman Mode from Metal-semiconductor ZnCore/ZnOshell Nanoparticles, Appl. Phys. Lett. 88: 181905, [2006]. (IF= 3.359,citation 12)[24]Kan C. X.,Wang G. H., Zhu X. G., Li C. C., Cao B. Q., Structure and thermal stability of goldnanoplates. Appl. Phys. Lett. 88: 071904, [2006].[25]Li C. C.,Cai W. P., Cao B. Q.,Sun F. Q., Li Y., Kan C. X., Zhang L. D., Mass Synthesis of Large SizeSingle-crystal Au Nanosheets Based on A Polyol Process, Advanced Functional Materials 16: 83-90, [2006].[26]Li Y., Cai W. P., Cao B. Q., Duan G. T.,Sun F. Q., Li C. C., Jia L. C., 2Dhierarchical porous silica film and its tunable superhydrophobicity, Nanotechnology 17: 238-243, [2006].[27]Li Y., Cai W. P., Cao B. Q., Duan G. T., Li C. C., Sun F. Q., Zeng H.B., Morphology-controlled 2D ordered arraysby heating-induced deformation of 2D colloidal monolayer, Journal of Material Chemistry 16:609-615, [2006].[28]Duan G. T., Cai W. P., Li Y., Li Z. G., Cao B. Q., Luo Y. Y., Transferableordered Ni hollow sphere arrays induced by electrodeposition on colloidalmonolayer, Journal of Physics andChemistry B. 110 (14): 7184-7188, [2006].[29]Duan G. T., Cai W. P., Li Y., Cao B. Q.,Measurement of Light Wavelength BasedOn Nanostructured Ordered Pore Arrays, Journalof Nanoscience and Nanotechnology Science 6, 2474-2478, [2006].[30]Cao B. Q., Cai W. P.,Duan G. T., Li Y., Zhao Q., Yu D. P.,A template-free electrochemical deposition route to ZnO nanoneedle arrays andtheir optical and field emission properties, Nanotechnology 16: 2567-2574, [2005]. (Written in the EU<<Roadmap for Photonics and Nanotechnologies>>)[31]Cao B. Q., Cai W. P.,Li Y., Sun F. Q., Zhang L. D.,Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bathdeposition Method, Nanotechnology16: 1734-1738, [2005]. (Highlighted by http://www.frost.com)[32]Cao B. Q., Sun F. Q.,Cai W. P., Electrodeposition-induced highlyoriented zinc oxide ordered pore arrays and their ultraviolet emissions, Electrochemical and solid State Letters8 (9): G237-G240, [2005].[33]Li Y., Cai W. P., Cao B. Q., Duan G. T.,Sun F. Q., Li C. C., Fabricationof the periodic nanopillar arrays by heat-induced deformation of 2D polymercolloidal monolayer, Polymer 46:12033-12036,[2005].[34]Li Y., CaiW. P., Duan G. T., Cao B. Q., Sun F.Q., Lu F., Superhydrophobicity of 2D ZnO orderedpore arrays formed by solution-dipping template method, Journal of Colloidal and Interface Science 287: 634-639, [2005].[35]Li Y., Cai WP, Duan G T, Sun F Q, Cao B Q, Lu F, 2D nanoparticle arrays by partialdissolution of ordered pore films, MaterialLetters 59 (2-3): 276-279, [2005].[36]Li Y., CaiW. P., Duan G. T., Sun F. Q., Cao B. Q., LuF., Fang Q., I.W. Boyd, Large-areaIn2O3 ordered pore arrays and their photoluminescenceproperties, Applied Physics A 81:269 – 273, [2005].[37]Li Y., CaiW. P., Duan G. T., Cao B. Q., Sun F.Q., Lu F., Two-dimensional ordered polymer hollowsphere and convex structure arrays based on monolayer pore films, Journal of Material Research 20 (2):338-343, [2005].[38]Sun F. Q.,Cai W. P., Li Y., Cao B. Q., Lei Y.,Zhang L. D., Morphology controlled growth of largearea ordered porous film, MaterialScience and Technology 21 (4): 500-504, [2005].[39]Cao B. Q., Cai W. P.,Sun F. Q., Li Y., Lei Y. and Zhang L. D., Fabrication of large-scale zinc oxide ordered pore arrayswith controllable morphology, ChemicalCommunications 14: 1604-1605, [2004].[40]曹丙强, 蔡伟平, 孙丰强,李越,胶体晶体及基于胶体晶体的纳米结构, 物理 33:127-132, [2004] (in Chinese)[41]Sun F. Q.,Cai W. P., Li Y., Cao B. Q., Lei Y.,Zhang L. D., Morphology control and transferabilityof ordered through-pore arrays based on electrodeposition and colloidalmonolayers, Advanced Materials16: 1116-1121, [2004].[42]Sun F. Q.,Cai W. P., Li Y., Cao B. Q., LeiY., Zhang L. D., Morphology-controlledgrowth of large-area two-dimensional ordered pore arrays, Advanced Functional Materials 14:283-288, [2004].1.ZL201110152509.4 一种具有减磨效果的氧化物微球的激光液相退火制备方法及应用 发明,中国,曹丙强,胡夕伦,郑少华 2.ZL201010011817.0 一种芯壳型纳米线的制备方法 发明,中国,曹丙强,段广彬,徐红燕,王介强,陶珍东 3.ZL200510122642.X 具有紫外发光性能的氧化锌纳米片薄膜材料及其制备方法 发明,中国,曹丙强,李村成,蔡伟平 4.ZL200510123055.2 对近红外光具有吸收性能的金纳米片及其制备方法 发明,中国,李村成,曹丙强,蔡伟平 5.ZL200410044978.4 形态可控的有序多孔膜材料及制备方法 发明,中国,孙丰强,蔡伟平,李越,曹丙强,张立德 6.ZL200410044976.5 形态可控、可转移的的有序通孔膜材料及制备方法 发明,中国,孙丰强,蔡伟平,李越,曹丙强,张立德 7.ZL200510095606.9 纳米结构有序多孔薄膜型气敏原件及其制备方法 发明,中国,孙丰强,蔡伟平,贾丽超,曹丙强,李越 8.ZL200410065171.9 超疏水薄膜材料及其制备方法 发明,中国,李越,蔡伟平,段国韬,曹丙强,张立德 9. ZL 2011 10393106.9 一种具有表面自织构结构的氧化亚铜太阳能电池及其制备方法 发明,中国, 刘畅,曹丙强,胡夕伦 |